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The successful use of macroinvertebrates as indicators of stream condition in bioassessments has led to
heightened interest throughout the scientific community in the prediction of stream condition. For exam-
ple, predictive models are increasingly being developed that use measures of watershed disturbance,
including urban and agricultural land-use, as explanatory variables to predict various metrics of biolog-
ical condition such as richness, tolerance, percent predators, index of biotic integrity, functional species
traits, or even ordination axes scores. Our primary intent was to determine if effective models could be
developed using watershed characteristics of disturbance to predict macroinvertebrate metrics among
disparate and widely separated ecoregions. We aggregated macroinvertebrate data from universities
and state and federal agencies in order to assemble stream data sets of high enough density appropriate
for modeling in three distinct ecoregions in Oregon and California. Extensive review and quality assur-
ance of macroinvertebrate sampling protocols, laboratory subsample counts and taxonomic resolution
was completed to assure data comparability. We used widely available digital coverages of land-use
and land-cover data summarized at the watershed and riparian scale as explanatory variables to predict
macroinvertebrate metrics commonly used by state resource managers to assess stream condition. The
“best” multiple linear regression models from each region required only two or three explanatory vari-
ables to model macroinvertebrate metrics and explained 41–74% of the variation. In each region the best
model contained some measure of urban and/or agricultural land-use, yet often the model was improved
by including a natural explanatory variable such as mean annual precipitation or mean watershed slope.

Two macroinvertebrate metrics were common among all three regions, the metric that summarizes the
richness of tolerant macroinvertebrates (RICHTOL) and some form of EPT (Ephemeroptera, Plecoptera,
and Trichoptera) richness. Best models were developed for the same two invertebrate metrics even
though the geographic regions reflect distinct differences in precipitation, geology, elevation, slope, pop-
ulation density, and land-use. With further development, models like these can be used to elicit better
causal linkages to stream biological attributes or condition and can be used by researchers or managers
to predict biological indicators of stream condition at unsampled sites.
. Introduction
Modeling in ecology has increased markedly in the past decade,
nd major advances have been made in terrestrial landscape ecol-
gy, including forestry and plant and fire ecology (Cushman et al.,
007). While advanced mechanistic models that include spatial

∗ Corresponding author. Tel.: +1 503 251 3463.
E-mail address: iwaite@usgs.gov (I.R. Waite).

470-160X/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
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and temporal processes have been developed for fluvial hydrol-
ogy, the application of models in stream ecology at present are
primarily descriptive models and they are not as well devel-
oped as in many other research areas (Leathwick et al., 2005;
Cabecinhaa et al., 2007; Turak et al., 2010). A fundamental goal

of bioassessment in stream ecology is a better understanding of
the effects of human land-use on stream biota and the mechanis-
tic processes at various scales that cause these effects. However,
streams are a complex spatial and temporal habitat mosaic that
is directly and indirectly influenced by natural geology, climate,
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nd human disturbance. Allan (2004) described the complexity
f human disturbance this way, “Different disturbances will exert
heir influence at different spatial scales and by different path-
ays.” Stream ecologists are trying to understand the spatial scales

nd processes associated with human and natural disturbances that
re affecting the biota. Models provide a useful framework for test-
ng our understanding and determining where further research is
eeded.

Stream bioassessments have successfully used metrics or multi-
etric indices of macroinvertebrates assemblages as indicators of

tream condition (e.g., Davies and Jackson, 2006; Hering et al., 2006;
arlisle et al., 2008; Stoddard et al., 2008; Waite et al., 2008). Most

ndividual metrics or aggregate indices, however, have been devel-
ped for and applied at specific local or small regional scales, and
here has been considerable concern about the application of such

etrics to different ecoregions or at larger spatial scales (Osborne
nd Suaı̌rez-Seoane, 2002; Hering et al., 2006; Pont et al., 2006;
ohnson et al., 2007; Ode et al., 2008; Stoddard et al., 2008). Species
ichness metrics for fish assemblages are known to change dramat-
cally from river basin to river basin or when comparing between
arge geographic regions, such as Eastern and Western United
tates (Meador et al., 2005; Waite et al., 2008). There is evidence
hat this phenomenon also occurs for some macroinvertebrate taxa
ichness metrics (Herlihy et al., 2008; Ode et al., 2008) and poten-
ially for pollution tolerance metrics (Cuffney, 2003; Cuffney et al.,
007; Stoddard et al., 2008), yet overall there is less known about
he application of invertebrate metrics across a variety of spatial
cales in North America.

There are many natural and human-induced factors structuring
tream ecosystems. Understanding how these factors operate and
ver what spatial scales is of central importance in ecology and crit-
cal for better resource management (Burnett et al., 2006). Wang et
l. (2006a,b) suggest that more attention is needed in developing
nd improving landscape models for predicting instream physio-
hemical and biological characteristics. Grace (2006) suggests in
rder to advance theory we need to branch into multivariate mod-
ls that address “a progressive refinement of ideas and explanatory
ower, while permitting broad general comparisons.” The expan-
ion and application of multivariate models in stream ecology are
elping to address these issues and hopefully will lead to better
nderstanding of ecological and anthropogenic causal pathways
nd responses (Oberdorff et al., 2001; Cabecinhaa et al., 2007; Turak
t al., 2010).

Much of the research documenting the effects of land-use
hange on stream biota indicates that as the total watershed area in
gricultural and/or urban land-use increases, the biological metrics
nd indices decrease (Paul and Meyer, 2001; Allan, 2004; Cuffney
t al., 2005; Waite et al., 2008). Though some researchers have
ound a threshold response (i.e., curvilinear or step function) of bio-
ogical indices to individual land-use indicators (Davis and Simon,
995; Wang et al., 2001; Walsh et al., 2005) much of the literature

ndicates that the response more often is a simple linear response
ith no initial resistance (Booth, 2005; Roy et al., 2005; Kennen et

l., 2005; Morgan and Cushman, 2005; Cuffney et al., 2005; Waite
t al., 2008). If biological responses to landscape measures are
ndeed complex and nonlinear, then newer modeling techniques
uch as regression classification trees (e.g., CART and random for-
st), machine learning techniques (e.g., multiple regression splines
nd neural networks), multilevel hierarchical modeling, or struc-
ural equation models (SEM) may be necessary to model these
esponses. However, if various biological responses to human dis-

urbance are linear, then they should be more easily modeled via
tandard regression techniques, which are easier to develop and
nterpret.

Modeling the relations among various biological indicators and
andscape measures will not only help researchers understand and
tors 10 (2010) 1125–1136

rank the importance of various linkages but will also allow pre-
diction of biological condition for unsampled streams. The latter
aspect may be especially important for resource managers charged
with reporting on the overall condition of all river and stream miles
within their borders. Previous work on predictive models for bio-
logical indicators at unsampled streams is limited, and most of
these predict fish abundance or richness (Steen et al., 2006). Until
recently, macroinvertebrate data sets large enough, sampled with
comparable protocols and across appropriate scales necessary for
landscape modeling have likely been the limiting factor for model
development.

Austin (2007) suggests that most papers on modeling do not
provide the theoretical underpinnings of the model. Our conceptual
model (Fig. 1) is based on the hypothesis that landscape charac-
teristics control stream hydrogeomorphology and therefore the
baseline biological assemblages (Allan, 2004; Davies and Jackson,
2006). We assume that ecoregions and watershed size provide a
fundamental or baseline classification of stream types and that,
in general, streams in the western U.S. are controlled more fre-
quently by abiotic processes than biotic interactions (Hawkins et
al., 2000; Waite et al., 2000). However, biotic interactions between
various trophic levels may still be important even though we do
not address them here (e.g., grazing by macroinvertebrates on
periphyton). Human-induced changes in land-cover (i.e., agricul-
ture, urban, roads, dams, and mining) often reduce stream riparian
zones thereby increasing light and runoff into streams, reducing
organic matter, and simplifying geomorphology (Allan, 2004; Utz
et al., 2009). Sediment and nutrient loads and water temperature
increase, and habitat complexity and volume are reduced (Waite
and Carpenter, 2000; Allan, 2004). Human-induced changes may
increase or decrease the magnitude and timing of flow and cause
complex changes to the water chemistry including increases or
decreases in dissolved oxygen and increases in ions, pesticides, and
toxics (Bryant et al., 2007; Carpenter et al., 2008; Paulsen et al.,
2008; Waite et al., 2008). These changes in water quality/quantity
and habitat may then cause changes in biological assemblages
through species additions and deletions (Fig. 1). In general, these
affects can be divided into direct and indirect pathways. For
example, most land-use changes can have significant impacts on
streams, yet most of these impacts are mediated through an indi-
rect pathway, such as changes in riparian shading, which then
increases stream temperature. This, combined with inputs of nutri-
ents and sediment from adjacent land-use, frequently leads to large
increases in instream productivity or eutrophication resulting in
a cascade of potential biological impacts. Therefore, this concep-
tual model suggests that watershed landscape data should be able
to be used to predict biological condition in unsampled streams,
assuming that the same abiotic responses occur as in the sampled
streams.

Our goal in this paper is to develop predictive models for
selected macroinvertebrate metrics using easily accessible water-
shed land-use/land-cover. We assembled macroinvertebrate data
sets for the purpose of developing predictive models of stream
macroinvertebrates from three disparate regions of the western
coastal United States: Southern Coastal California and the Blue
Mountains and Willamette Valley ecoregions, Oregon. Our over-
arching hypothesis was that watershed disturbance predictive
models could be developed for the three distinct geographic regions
using simple measures of the amount of urban, agriculture, and
infrastructure within the watershed (Fig. 1) and that riparian scaled
disturbance measures would largely be redundant. The develop-

ment of watershed disturbance predictive models such as those
presented herein will help lay a strong foundation for deriving
more complex models to address the biocomplexity of causal
mechanisms and disturbance pathways in landscape and aquatic
ecology.
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ig. 1. Conceptual model relating the influence of agricultural and urban land-use
rrows indirect pathways. Note: Direction of response may be positive or negative e

. Methods

.1. Data aggregation and landscape analysis

We evaluated multiple data sets for inclusion in our study.
e gathered a list of all possible watersheds with macroin-

ertebrate data for wadeable streams in non-forest dominated
andscapes in order to focus on the affects of agricultural and
rban land-use in the states of Washington, Oregon, and Cali-
ornia. Site location data were obtained from both Federal and
tate agencies, including the U.S. Geological Survey, the U.S.
nvironmental Protection Agency, Oregon State University, the
regon Department of Environmental Quality, and the California
epartment of Fish and Game. Combined, these datasets con-

ained nearly 3000 sampling sites. The sites were then evaluated
n the following criteria: invertebrate data sampled with com-
arable methods; upstream watershed area of between 13 and
59 km2; and sites could not be nested watersheds (i.e., no spa-
ial autocorrelation) The sites meeting the criteria resulted in three
rincipal study areas: Coastal Southern California (55 sites), the
lue Mountains ecoregion of eastern Oregon (148 sites), and the
illamette Valley ecoregion in north-central Oregon (96 sites)

Fig. 2).
Watersheds were delineated for the selected sampling sites

ithin the three study areas using USGS 7.5-min quadrangle digi-
al raster graphics (DRG) as base layers. The DRGs were displayed

n-screen along with National Hydrography Dataset (NHD) high
esolution stream lines for each region (U.S. Geological Survey,
007). Watershed boundaries were digitized on-screen at a scale
f 1:10,000 or larger. Adjacent watershed polygons were edge
atched to eliminate all overlaps and gaps. All work was con-
ctors that affect stream condition. Solid arrows indicate direct pathways, dashed
ithin one conceptual box.

ducted using ArcGIS, ArcMap 9.2 (Environmental Systems Research
Institute, Redlands, CA) GIS software.

Riparian zone buffer polygons were created within each water-
shed, extending 2 km upstream from the outlet of each watershed
along the main stem and all tributaries and 90 m on either side of
the stream centerlines. The buffers were created by selecting the
appropriate NHD stream lines within each watershed and creating
routes along each main stem and tributary flow path. The routes
were then clipped to a distance of 2 km from the basin outlet and
buffered.

Spatial datasets representing landscape metrics of watershed
disturbance were created for each watershed and riparian zone
buffer from available national and regional datasets (Appendix 1)
and included elevation, slope, land-cover (1992 and 2001), popula-
tion density, road networks, soil infiltration capacity, hydrography,
pollution point sources, dams, and precipitation. Land-use sum-
maries were based on either 1992 or 2001 spatial data, depending
on which data source was closer to the macroinvertebrate sam-
ple date for that watershed. The landscape metric data were of
two types (raster and vector), which were processed differently to
obtain summary statistics for each watershed and riparian zone
buffer. Landscape metric data in vector format were processed
by intersecting the watershed and riparian zone polygons with
each landscape dataset. Summary statistics for each watershed
and riparian zone buffer were then calculated from the intersect
results. Landscape metric data in raster format were processed

using the Spatial Analyst extension and the zonal statistics tool
in ArcMap. Watersheds and riparian zone buffers were used to
define zones for analysis and calculate summary statistics. The 1992
and 2001 land-cover datasets used slightly different classification
schemes. Uniform codes based on the 2001 classification scheme
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Fig. 2. Map showing land-use and land-cover for the three modeling reg

ere assigned to all land-cover classes in the final summary statis-
ics table.

.2. Description of modeling regions

The Coastal Southern California (SoCal; Southern and Cen-
ral California Chaparral and Oak Woodlands Ecoregion) region
as a Mediterranean climate of hot dry summers and cool moist
inters (Ode et al., 2005). Precipitation averages 25–50 cm/year

Fig. 3). The geology of the ecoregion is dominated by recently
plifted and poorly consolidated marine sediments. Vegetative
over in this region consists mainly of chaparral and oak woodlands,

hough grasslands occur in some lower elevations and patches
f pine are found at higher elevations (open low mountains or
oothills). The landscape is currently dominated by urban devel-
pment; the human population is approximately 19 million and
s projected to exceed 28 million by 2025 (Ode et al., 2005).
Blue Mountains and Willamette Valley, Oregon and Southern California.

Outside the urban centers, much of this region was historically
grazed by domestic livestock or cultivated for fruits and vegeta-
bles, but most of this was converted to urban starting many decades
ago.

The Blue Mountains (Blue Mt) are the westernmost range of the
Middle Rocky Mountains and, like the Cascade Range, are largely
volcanic with fertile plateaus and deeply fissured river valleys.
Carved by two rivers (the John Day and Grande Ronde Rivers) the
landscape has steep hillsides, bluffs and rimrock faces. Temperature
and precipitation are highly correlated with elevation. Precipitation
ranges from 22 to 45 cm/year along the river valleys and greater
than 250 cm/year in the nearby mountains. This region is domi-

nated by coniferous forests in mid- to higher elevations and shrub
and grassland in lower elevations, though much of the latter has
been displaced by agriculture and grazing. The region has no large
cities and urbanization is limited to scattered smaller cities and
small towns.
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Fig. 3. Box plots of selected land-use and land-cover variables for the thre

The Willamette Valley (Will V) ecoregion contains a mixture of
olling prairies, mixed forests, and extensive lowland valley wet-
ands. With temperate, dry summers and cool, wet winters, the

illamette River basin and surrounding area is characteristic of the
acific Northwest climate. About 90% of the annual precipitation
100–130 cm/year) occurs during October through May (Uhrich and

entz, 1999), falling as rain in the valley and snow in the moun-
ains. The land-use/land-cover in the valley plains and foothills
s primarily cultivated crops, pasture, and grasslands. Urbaniza-
ion ranges from minimal to extensive (U.S. Geological Survey,
005). Centered on the confluence of the Columbia and Willamette
ivers, Portland is the most populous city in Oregon, with 539,000
eople in city limits and nearly 3 million people in the Portland
etropolitan area (U.S. Census Bureau, 2000). The population in the
etropolitan area increased almost 30% from 1990 to 2000, with

ome suburban populations increasing more than 80% during the
ame period (U.S. Census Bureau, 2000). The drainage network in
he Willamette Valley combines natural tributaries, complex net-
orks of canals in agricultural areas, and stormwater canals and

roundwater infiltration wells in cities.
As a result, the three geographic regions modeled in this study

ave distinct natural settings and the extent of human distur-
ances. SoCal had the driest climate, intermediate mean stream
ite elevation (Min Elev) and percent agriculture, and the high-
st population density (Fig. 3). Blue Mt had the highest mean site
levation and mean watershed slope, intermediate mean precipita-
ion, and the lowest population density, percent urban, and percent
griculture. Will V had the greatest precipitation, lowest mean site
levation, and the highest percent agriculture.

.3. Macroinvertebrate data

Macroinvertebrate data from 1994 to 2005 assembled for this
tudy were considered to be comparable in terms of sampling pro-

ocols (sampled habitat, number of composite samples and total
ampled area) and laboratory procedures, including sorting, sub-
ample count level, and taxonomic resolution (pers. commun. state
gency personnel, 2005; Waite et al., 2004). Extensive review of
he data was completed to make sure aggregated data from sep-
eling regions summarized separately. See text for description of variables.

arate sources included the same taxonomic groups, followed the
same spelling and abbreviation procedures, and had appropri-
ate taxonomic resolution before data analysis was attempted. The
Invertebrate Data Analysis System (IDAS) software (Cuffney, 2003)
was used to resolve by region all taxonomic issues (taxonomic
identification level and nomenclature), to remove ambiguous taxa,
and to randomly subsample raw counts to an equal specimen
count by region of either 300 or 500 count. In general, data for
dominant aquatic insect orders were resolved at genus level. Less
common orders were often aggregated to family level. Rare organ-
isms or those with difficult taxonomy were sometimes aggregated
to order or higher. The dipteran family, Chironomidae, is consid-
ered an important bioindicator group, yet historically a difficult
group to identify to genus or species. As a result, data for this
group were assigned to six taxa levels (five subfamilies plus Chi-
ronomidae) from the various family to genus level identifications
that occurred within the original data. After data preparation, the
IDAS program was used to calculate 137 invertebrate metrics, many
of which are commonly used in stream bioassessment (Rosenberg
and Resh, 1993; Davis and Simon, 1995; Barbour et al., 1999). Tol-
erance and functional group metrics were calculated using values
from Barbour et al. (1999), supplemented with values from Wis-
seman’s tolerances for the Pacific Northwest (Wisseman, 2004;
pers. commun.). Tolerances were calculated on the basis of richness
(average of tolerance values assigned to each taxon) and density
(density-weighted tolerances; Cuffney, 2003). In addition to indi-
vidual macroinvertebrate metrics described above, ordination axes
scores from nonmetric multidimensional scaling ordinations run
on each full macroinvertebrate Bray-Curtis resemblance matrix
using all taxa were also used as bioindicator variables.

2.4. Model development

Scatter plots and correlation matrices were used to examine

data distributions and to detect potential outliers. Response vari-
ables and landscape variables with a limited range of response were
removed from consideration (r < 0.50). Remaining metrics and ordi-
nation axes scores were correlated (Spearman rank correlation)
against each other to examine redundancy, as were the landscape
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Table 1
Description, variable code and definition of explanatory (landscape) and predictor (invertebrate metrics) variables used for model development.

Explanatory variables: landscape Definition

Description Variable code

Watershed Scale Variables
Percent Urban Land-use WS Urban Percent watershed area in urban land-use (NLCD 2000 categories 21, 22, 23, and 24)
Percent Agricultural Land-use WS Ag Percent watershed area in agricultural land-use (NLCD 2000 category 82)
Sum of Percent Ag + Urban WS Ag+Urb Sum of percent watershed area in urban (NLCD 2000 categories 21, 22, 23, and 24) and agricultural (NLCD 82)

land-use
Percent Forest WS Forest Percent watershed area in forest land-use (NLCD 2000 categories 41, 42, 43)
Percent Pasture WS Pasture Percent watershed area in pasture land-use (NLCD 2000 category 81)
Percent Shrub/Scrub WS Shrub Percent watershed area in Shrubland, Shrub/Scrub (NLCD 2000 category 52)
Road Density WS RdDens Road density in watershed = road length (km)/watershed area (km2)
Mean Population Density WS PopDen Watershed mean population density based on 2000 census (persons/km2)
Mean Elevation WS Mn-Elev Mean watershed elevation (m)
Mean Slope Percent WS Slope Mean percent watershed slope
Manmade Stream Density WS MmStreams Manmade stream density in watershed = manmade stream length (km)/watershed area (km2)
Mean Annual Precipitation WS MnAnnPrecip Mean annual precipitation (cm)
Soil Infiltration Rate Soil Mod-Infil Hydrologic soil group B, moderate infiltration rate (min. infiltration rate 4–8 mm/h)

Riparian Scale Variables
Percent Urban Land-use Rip Urban Percent buffer area in urban land-use (NLCD 2000 categories 21, 22, 23, and 24)
Percent Agricultural Land-use Rip Ag Percent buffer area in agricultural land-use (NLCD 2000 category 82)
Sum of Percent Ag + Urban Rip Ag+Urb Sum of percent buffer area in urban (NLCD 2000 categories 21, 22, 23, and 24) and agricultural (NLCD 82)

land-use
Percent Forest Rip Forest Percent buffer area in forest land-use (NLCD 2000 categories 41, 42, 43)
Percent Pasture Rip Pasture Percent buffer area in pasture land-use (NLCD 2000 category 81)
Percent Shrub/Scrub Rip Shrub Percent buffer area in Shrubland, Shrub/Scrub (NLCD 2000 category 52)
Road Density Rip RdDens Road density in buffer = road length (km)/watershed area (km2)
Mean Population Density Rip PopDens Buffer area mean population density based on 2000 census (persons/km2)
Mean Slope Percent Rip Slope Mean percent buffer slope
Maximum Elevation Rip Max-Elev Maximum buffer elevation (m)

Response Variables: Invertebrate Metrics
Total Taxa Richness RICH Total richness (number of non-ambiguous taxa)
EPT richness EPTR Richness composed of mayflies, stoneflies, and caddisflies
EPT percent richness EPTRp Percentage of total richness composed of mayflies, stoneflies, and caddisflies
EPT/chironomid ratio EPT CHR Ratio of EPT richness to midge richness
PLECO percent richness PLECORp Percentage of total richness composed of stoneflies
Intolerant abundance percent Intol abundp Percent abundance-weighted USEPA tolerance value for intolerant taxa
Tolerant richness RICHTOL Average USEPA tolerance values for sample based on richness
Tolerant percent richness RICHTOLp Average USEPA tolerance values for sample based on percent richness
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Noninsect percent richness NONINSRp Percentage of total richn
NMDS Axis1 score nMDS axis 1 Axis 1 values from a bi-

ariables. Surrogate variables were selected to represent intercor-
elated (r > 0.70) groups of variables. If all quantitative factors were
qual between two variables, we considered the general applicabil-
ty of the variables to other geographic areas, regional or national
cceptance, and ease of measurement. We then examined correla-
ions of macroinvertebrate metrics with landscape variables and
eleted variables that had no correlations greater than 0.70. All
nalyses were completed using a combination of Primer v6 (Clarke
nd Gorley, 2006), SAS (version 9.2) and R statistical program (R
evelopment Core Team, version 2.7.2).

The remaining variables were used to develop multiple linear
egression (MLR) models (see Table 1 for final variable list, def-
nitions and codes). If necessary, variables were transformed to
mprove their distributions. Models were developed for each geo-
raphic region separately. We assessed model performance using
variety of statistics, including adjusted mean sum of squares

R2), root mean squared error (RMSE), Akaike Information Criterion
AIC), predicted sum of squares (PRESS), and regression coefficients.

e adopted a model fitting approach for each response variable.
e used a step-wise selection based on AIC for all models rang-

ng from 1 to 5 environmental variables, as appropriate by region.

odel residuals, potential outliers and interaction terms were eval-

ated. When selecting the final or best model for each region,
onsideration was given to the number of explanatory variables
nd whether an interaction term was needed. Models were ranked
n order of adjusted R2 value with higher ranking for models with
mposed of noninsects
f two-dimensional distribution based on multivariate similarities

the lowest number of variables and/or no interaction term. To help
evaluate the relative importance of each variable within the final
models, partial R2 values were determined for each variable. For
brevity, only plots of observed versus fitted points (predicted) for
the metric RICHTOL will be presented for each region. A 1:1 line
is added to the plot to help visual interpretation of the observed
and fitted points; ideally, points should cluster close to the 1:1 line
with equal points above and below. To allow better interpretation
of the model coefficients (predictors), all variables were standard-
ized in the final model development to a mean of zero using the
‘scale’ function in R.

3. Results

3.1. Southern California

Three macroinvertebrate response variables were retained for
final model development: EPT taxa richness (EPTR), total taxa
richness (RICH), and average tolerance value of taxa present
(RICHTOL). Eight environmental predictor variables were retained:

two riparian variables, mean road density, and mean slope
(Rip RdDens, Rip Slope) (Appendix 1) and six watershed variables,
percent forest and shrub landcover, percent manmade streams,
mean population density, mean annual precipitation, and mean
slope (WS Forest {arcsine}, WS Shrub {arcsine}, WS MmStreams



I.R. Waite et al. / Ecological Indicators 10 (2010) 1125–1136 1131

Table 2
Multiple linear regression models for the Southern California (SoCal), Blue Mountains (Blue Mt) and Willamette Valley (Will V) ecoregions; regression equation parameters
provided—intercept and standardized regression coefficients (in parentheses), partial R2, as well as four statistical “goodness-of-fit” measures, R2 and adjusted R2 (Adj-R2),
root mean squared error (RMSE) and predicted residual sum of squares (PRESS). Regression coefficients and intercept are statistically significant at P < 0.05.

Response variable Regression model Partial R2 AIC R2 Adj-R2 RMSE PRESS

SoCal
RICHTOL Intercept (6.419) −95 0.68 0.67 0.424 10.7

WS PopDen L (0.511) 0.404
Rip RdDens L (0.174) 0.274

EPTR Intercept (5.702) 120 0.59 0.58 2.789 454.9
WS PopDen L (−2.106) 0.523
Rip Slope L (1.510) 0.069

RICH Intercept (21.729) 223 0.55 0.52 7.038 3007.6
WS PopDen L (−8.581) 0.341
WS MmStreams A (−2.624) 0.118
WS Shrub A (−4.691) 0.087

Blue Mt
RICHTOL Intercept (3.98) −219 0.45 0.44 0.446 29.3

WS Shrub (0.20) 0.262
WS Ag (0.11) 0.108
WS MnAnnPrecip (−0.02) 0.085

EPTRp Intercept (48.155) 629 0.41 0.40 8.996 30.3
WS Shrub (−4.956) 0.217
WS Pasture (−3.212) 0.140
WS Slope (0.2.874) 0.057

Will V
RICHTOL Intercept (5.960) −124 0.75 0.74 0.380 14.3

WS Ag+Urb SQ (0.327) 0.676
WS MnAnnPrecip SQ (−0.258) 0.053
Rip Ag+Urb SQ (0.124) 0.017

EPTR Intercept (7.917) −115 0.72 0.71 3.343 1110.5
WS Ag+Urb SQ (−2.836) 0.647
WS MnAnnPrecip SQ (2.731) 0.071

NONINSRp SQ Intercept (5.246) −116 0.72 0.71 0.834 69.4
WS Ag+Urb SQ (0.698) 0.682
WS MnAnnPrecip SQ (−0.422) 0.028
Rip Max-Elev SQ (−0312) 0.013

PLECORp Intercept (8.252) −107 0.69 0.68 4.403 1946.9
WS Ag+Urb (−4.896) 0.644

L

{
t
w
T
d
i
t
v
f
a

F
W

Soil Mod-Infil (2.206) 0.047

: log 10(X + 1) transformed; A: arcsine transformed; SQ: square root transformed.

arcsine}, WS MnAnnPrecip, WS PopDen, and WS Slope, respec-
ively) (Table 2). All models included watershed population density,
hich was the best single explanatory variable (Table 2). For RICH-

OL, the best model included the log of watershed population
ensity and the log of riparian road density (Table 2). Increases

n these two variables resulted in an increased mean tolerance of

he taxa present at a site. Additional environmental variables pro-
ided little or no reduction in AIC. The observed versus fitted plot
or RICHTOL showed a slight bias for overestimation of fitted points
t low values (Fig. 4).

ig. 4. Predicted vs. observed richness weighted tolerance values (RICHTOL) from MLR
illamette Valley (Will V).
The model for EPTR included log of riparian slope in addition to
log of population density (Table 2). Including additional environ-
mental variables decreased AIC by three or four points, but R2 was
only improved by about 10%, and the additional variables were not
significant at P < 0.05 in the regression models. For these reasons
we chose the two variable model as the best. The model indicates

that EPTR declines with increasing watershed population density
but that steeper riparian slopes tend to ameliorate the effect.

The model for the invertebrate metric RICH was the most
complex, it included three variables—log of population density,

models developed for Southern California (SoCal), Blue Mountains (Blue Mt) and
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ercentage of manmade channels (arcsine) and percentage of
hrubland (arcsine) in the watershed (Table 2). Similar to that found
ith RICHTOL, additional environmental variables provided little or
o reduction in AIC for RICH metric. Total taxa richness declined as
he environmental variables increased.

.2. Blue mountains

Two macroinvertebrate response variables were retained for
odel development in Blue Mountains, percent EPT richness

EPTRp) and RICHTOL, along with six watershed explanatory vari-
bles including percent pasture (WS Pasture); shrub, agriculture,
nd forest landcovers; and mean annual precipitation and mean
lope. The model for RICHTOL included percent shrub, percent agri-
ulture, and mean annual precipitation (Table 2). As watershed
rea in shrub and agricultural land increased, the number of tol-
rant taxa increased. The response was dampened by the amount
f annual precipitation. Watersheds with higher annual rainfall
ad lower numbers of tolerant taxa. Precipitation was positively
orrelated with percent forest and elevation. The observed versus
tted plot for RICHTOL showed a relatively high degree of depar-
ure from the 1:1 line, with significant scatter at higher values
f RICHTOL (Fig. 4). The best model for EPTRp included percent
hrub and pasture and mean slope (Table 2). Increases in shrub
nd pasture within a watershed resulted in lower percent EPT
ichness. The response was dampened by increases in watershed
lope.

.3. Willamette valley

Four macroinvertebrate response variables were retained for
odel development in Willamette Valley: RICHTOL, EPTR, the

quare root (sqrt) of percent noninsect richness (NONINSRp) and
ercent Plecoptera richness (PLECORp). There were six watershed
cale and three riparian scale environmental explanatory vari-
bles retained. The watershed variables were percent agriculture
lus urban land-use (WS Ag + Urb), percent forest (WS Forest),
ean annual precipitation, mean slope, mean elevation (WS Mn-

lev) and mean moderate soil infiltration rate (Soil Mod-Infil). The
hree riparian scaled variables were percent agriculture plus urban
and-use (Rip Ag + Urb), percent forest (Rip Forest) and maximum
levation (Rip Max-Elev).

The best model for RICHTOL included watershed scale percent
griculture plus urban (sqrt), mean annual precipitation (sqrt), and
iparian scaled agriculture plus urban (sqrt) (Table 2). As the total
griculture plus urban land-use increased at both the watershed
nd riparian scales, the number of tolerant taxa increased. The
esponse was reduced with an increase in the mean annual pre-
ipitation. The observed vs. fitted points for tolerant taxa richness
RICHTOL) was tightly clustered along the 1:1 line, perhaps with a

light underestimate bias at high values (Fig. 4).

For PLECORp, the best model included WS Ag + Urb and
oil Mod-Infil suggesting that as the total percent watershed area
f agriculture plus urban land-use increases the percent richness
f stoneflies decreases (Table 2). This relationship was ameliorated

able 3
ist of dependent variables (macroinvertebrate metrics) for models for each region and m
etained in the model.

SoCal Blue Mt Will V

Model R2 0.67 (2) 0.44 (3) 0.74 (3)
Model 2 R2 0.58 (2) 0.40 (3) 0.71 (2)
Model 3 R2 0.52 (3) – 0.71 (3)
Model 4 R2 – – 0.68 (2)
tors 10 (2010) 1125–1136

by watersheds having higher mean moderate soil infiltration rates.
As expected, the model for EPTR was similar to the PLECORp model
since Plecoptera is the “P” in EPT; the EPTR model included the same
land-use types (WS Ag + Urb) and mean annual precipitation was
substituted in place of soil infiltration rate. Both models were able
to explain similar amounts of variation, 68–71%. The EPTR model
suggests that as the amount of total area of agricultural plus urban
land-use increases the number of EPT taxa decreases. The response
was reduced in watersheds with higher mean annual precipita-
tion.

The best model for percent noninsect richness (sqrt) included
watershed agriculture plus urban land-use and mean annual pre-
cipitation as found in two of the other models but also included
riparian maximum elevation (sqrt) (Table 2). This model sug-
gests that as the amount of total agriculture plus urban land-use
increases the percentage of noninsect taxa increases. The response
was reduced in watersheds with higher precipitation and higher
riparian elevation.

4. Discussion

Considering the differences in the natural environmental set-
tings among regions and that we started model development with
120 potential macroinvertebrate metrics, there was remarkable
commonality in the macroinvertebrate response metrics that were
selected in the best models within each region (Table 3). The
response variables for each region included richness of tolerant
taxa (RICHTOL) and total EPT taxa (richness or percent richness).
Tolerant taxa and EPT richness are commonly used metrics in
bioassessment and have been shown to be sensitive to distur-
bance in a variety of geographic regions. Cuffney et al. (2005) found
RICHTOL to have a strong consistent correlation (R2 = 0.60–0.85) to
an index of urban intensity in three distinct metropolitan regions
with contrasting climates and topography (Boston, MA; Birming-
ham, Alabama; Salt Lake City, UT). Across these three metropolitan
regions there was a decrease in EPT taxa richness of over 67% when
comparing low urban sites to high urban sites. Waite et al. (2008)
found that EPTR had one of the highest correlations (R2 > 0.72) of
all variables to a variety of land-use measures (population den-
sity, impervious surface, urban + agriculture and urban intensity
index) in the Willamette Valley and it was also highly correlated
(R2 > 0.75) to various water quality measures of human disturbance
(e.g., total pesticides, pesticide toxicity index, toxic equivalents
(TEQ) index and total phosphorus). In addition to tolerant taxa and
EPT richness, best models were developed for three other macroin-
vertebrate metrics. Southern California was the only region that
created a significant model for total invertebrate richness (RICH)
and Willamette Valley the only region for noninsect richness (NON-
INSRp) and stonefly richness (PLECORp).

Land-use variables were significant predictors in all three

regions, although the specific variables selected within each model
differed between regions (Tables 2 and 3). Southern California had
the largest range of population density and road density com-
pared to the other two regions, the maximum population density in
Southern California was over twice the maximum of the other two

odel R2 values. Values in parentheses = number of significant explanatory variables

Response variables

SoCal Blue Mt Will V

RICHTOL RICHTOL RICHTOL
EPTR EPTRp EPTR
RICH – NONINSRp
– – PLECORp
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egions (Fig. 3). Therefore, it was not surprising that these two vari-
bles were dominant explanatory variables in all three of the best
odels developed for Southern California. Similarly, Willamette
alley had higher ranges in percent agriculture and percent agricul-

ure plus urban than the other two regions and the latter variable
as the dominant variable in all of the Willamette Valley models.

Blue Mountains also showed a response due to land-use/land-
over (shrub and pasture); although the amount of variation in
nvertebrate metrics explained was much lower than either of the
ther two regions. The Blue Mountains data set had little agricul-
ure or urban land-use, but according to Hubler (2007) this was
artly due to a relatively high rate of denied access to stream sites
y land owners in many of the highly agricultural areas, reduc-

ng the number of sites with higher potential disturbance. Though
he 147 sites used within this study were randomly selected, the
igh rate of denied access limited our ability to model the macroin-
ertebrate response over the complete disturbance gradient. This
educed disturbance gradient is reflected in the narrow range of
acroinvertebrate tolerance values (RICHTOL) seen in Blue Moun-

ains compared to either Southern California or Willamette Valley
Fig. 4). Therefore, it is somewhat surprising that any significant

odels were developed for Blue Mountains given the truncated
isturbance gradient. We believe this is evidence of the robust sen-
itivity of watershed models developed using macroinvertebrates
s response variables.

Models developed for the three regions were able to explain
rom 41 to 74% of the variation in macroinvertebrate metrics
ue to changes in some measure of land-use and natural factors
Table 2). A number of studies using fish metrics (i.e., IBI, index of
iotic integrity) as response variables were able to explain similar
mounts of variation (Kennen et al., 2005; Kaufmann and Hughes,
006) based on various combinations of watershed and riparian
caled land-use. Steen et al. (2006) developed an MLR model that
as able to predict the presence of brook trout at sites through-

ut the lower peninsula of Michigan with an accuracy of 86%
nd absence of brook trout at sites with 72% accuracy. The three
xplanatory variables were July air temperature, stream size, and
ercent forest, the converse of percent agriculture plus urban. The
atabase they used to develop these models included 900 sites
panning 22 years and an independent database with 628 sites over
geographic area larger than the majority of states in the U.S. This

uggests that a very large n (i.e., the total number of stream sites) is
ikely needed to have a high degree of predictive power or explain a
arge amount of biotic variability over a relatively large geographic
rea. Nevertheless, in the Willamette Valley, with a much smaller
umber of sites (n = 96) covering a smaller region, we were able to
xplain over 70% of the variation of several macroinvertebrate met-
ics with only two or three explanatory variables. However, because
here is no known independent data set in any of these regions, we
ave not been able to test our prediction accuracy. Van Sickle et
l. (2004) also modeled fish and macroinvertebrates as a function
f watershed land-use/land-cover, physiographic and stream flow
ariables in the Willamette River Basin. They developed regres-
ion models with two to five explanatory variables for fish IBI and
nvertebrate EPT richness. All models developed had the amount
f agricultural and urban land-use within the watershed as sepa-
ate measures of human disturbance. Some models also included
easures such as stream power, stream order, stream gradient, or
atershed area. Invertebrate models were based on 55 sampled

treams within the Willamette Valley Ecoregion and were able to
xplain 0.52 and 0.61% of the variance (R2) for invertebrate O/E

observed/expected, 4 variable model) and EPT richness (3 variable

odel) indicators, respectively. Many of the sites used by Van Sickle
t al. (2004) were also included in the data set used in this study.

The spatial scale for optimal model development is an impor-
ant consideration with practical implications. Ideally, researchers
tors 10 (2010) 1125–1136 1133

and managers would like models to be highly parsimonious and
applicable over large geographic areas; however, the large vari-
ation in natural physiographic and biotic conditions often makes
this unrealistic (Hawkins et al., 2008; Ode et al., 2008; Paulsen et
al., 2008; Utz et al., 2009). In this study we used ecoregions as
our primary blocking variable. Comparisons made between two
bordering ecoregions in Michigan by Diana et al. (2006) indicated
that when the two ecoregions were modeled together, MLR mod-
els using instream habitat variables were better predictors of fish
IBIs than models using land-use variables. However, when the two
watersheds were modeled separately, urban and agricultural land-
use variables became more important explanatory factors. Using
percent wetland in riparian buffer and percent urban and agricul-
ture in the watershed, they were able to predict fish IBI scores with
an adjusted R2 of 0.79 in the Raisin River basin. In the Huron River
basin, the combination of agriculture plus urban performed better
than each land-use variable individually (R2 = 0.76) (Diana et al.,
2006). Kaufmann and Hughes (2006) also found that models for
predicting fish IBI were better when stream sites within the Coast
Range of Oregon were broken up by geology (sedimentary and vol-
canic) and catchment size (< or >15 km2). Important explanatory
variables included road density and an index of riparian anthro-
pogenic land-use and instream variables of percent bedrock and
summer discharge.

Many studies have shown that watershed or stream size is an
important natural determinate of biological assemblages (Waite et
al., 2000; Allan, 2004; Infante et al., 2006; Kaufman and Hughes
2006; Ode et al., 2008). For this reason we selected only sites
from watersheds ranging from 13 to 259 km2 (corresponds approx-
imately to second to fourth order streams in the western United
States) to focus more on land-use disturbance than natural gradi-
ents. A standard axiom in building models is that there are inherent
tradeoffs in the ability of models to reflect reality, precision, and
generality. When models are developed for larger spatial areas (i.e.,
generality) the precision and reality of models often decline (Ode
et al., 2008). The research described above and results from this
study suggest that as the modeled spatial scale increases, natural
environmental setting variables become more important and likely
swamp differences in anthropogenic impacts, and therefore it is
important to block or classify sites by natural variables with large
variation across spatial scales (e.g., elevation, basin size, physio-
graphic provinces, climate). Because of the large gaps in distribution
of sites between the three regions and the large differences in nat-
ural variables, we did not attempt to develop one model across
all three regions. However, there is enough commonality in the
response metrics and explanatory variables that future evaluation
of model error structure and causal links is warranted through the
application of more advanced modeling methods.

In Willamette Valley, combining agriculture and urban land-
use into one variable performed better than entering each variable
individually. For EPTR the variance explained increased from 59
to 65%. The combined variable likely provides more information
on general watershed disturbance and possibly smoothes out the
distribution of data by filling in uneven gaps in the land-use data.
Waite et al. (2008) found that they could not distinguish the
effects of agricultural land-use from urbanization for three biotic
assemblage measures (algae, macroinvertebrates, and fish) in the
Willamette Valley. Wang et al. (2001) found larger negative effects
of urbanization than agriculture on fish IBIs in Wisconsin streams,
and Moerke and Lamberti (2006) suggested that even low per-
centages of urban land-use (<40%) had similar effects on fish and

water quality as higher amounts of agricultural land-use (>50%).
Other researchers have found similar negative influences of the two
land-use types (Van Sickle et al., 2004; Diana et al., 2006; Waite
et al., 2008). Stanfield and Kilgour (2006) suggest that “there is
value in developing an overall metric of catchment disturbance”
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uch as the combination of agriculture plus urban land-use. For
outhern California and Blue Mountains, combining agriculture and
rban land-use did not improve the respective models because
hose regions were dominated by a single human disturbance. In

illamette Valley, combining these variables into a “catchment
isturbance” variable did show considerable improvement in all
our of the models because both agriculture and urban land-uses
re large.

In another Willamette Valley model (RICHTOL), the amount of
griculture plus urban land-use within the riparian corridor was
dded as a significant explanatory variable even though watershed
caled agriculture plus urban was already contained within the
odel. This suggests that land-use disturbance within the ripar-

an buffer helps explain variation in macroinvertebrates above and
eyond the watershed measure of land-use disturbance. The effects
f riparian land-use on streams may be more direct or at least
ave a shorter causal pathway. Wang et al. (2006a,b) found that
atershed characteristics had more influence on fish assemblages

n disturbed systems and local instream factors greater influence
n undisturbed systems. They suggested that in minimally dis-
urbed streams, watershed, riparian, and instream conditions are in
ynamic equilibrium, providing a stable ecosystem with the natu-
al biotic communities adapted to this dynamic interplay of causal
cales. When human disturbance alters this equilibrium, the stream
stablishes a new equilibrium, forcing the resident organisms to
dapt or respond to the change in the environment. Results from
ur study suggest that watershed and local riparian disturbances
oth have influences on biota that are not necessarily mutually
xclusive. In addition, although watershed variables tended to be
etter predictors than riparian scaled predictors in this study, this
ay be due more to the fact that the riparian data was generated

rom the same large remote-sensing NLCD data collected at a coarse
esolution (minimum pixel scale of 30 m × 30 m) and less due to the
nherent influence of riparian zones on water quality and biolog-
cal integrity in streams. We suggest that assessment of riparian
and-use/land-cover data at finer resolution should be considered
n future watershed modeling efforts.

In addition to the watershed and riparian variables describ-
ng land-use disturbance, natural factors were also important
xplanatory variables in the three regions (Table 3). Mean annual
recipitation and mean watershed slope occurred in at least one
odel from all regions. In Willamette Valley, natural factors related

o maximum riparian elevation and moderate soil infiltration rate
Soil Mod-Infil) were also important. Around the world, land-use
evelopment for urban and agriculture generally follows natural
hysiographic gradients, therefore these natural factors are inter-

wined with gradients of human disturbance (Allan, 2004; Cuffney
t al., 2005). Urban and agricultural watershed development in the
illamette River basin and surrounding area has occurred in the

at valley lowlands rather than in the higher elevation foothills and

Spatial dataset Data source Source
data
format

Process
format

Hydrography National Hydrography Dataset
(NHD)

Vector Vector

Land-cover 1992 National Land-Cover Dataset
1992 (NLCD)

Raster Vector

Land-cover 2001 National Land-Cover Dataset
2001 (NLCD)

Raster Vector

Elevation National Elevation Dataset (NED) Raster Raster
tors 10 (2010) 1125–1136

mountains (Uhrich and Wentz, 1999; Waite et al., 2008). However,
precipitation and channel slope also follow this natural topography,
resulting in more precipitation and higher slopes in the higher ele-
vation foothills. When the 20 highest elevation sites were removed
from the Willamette Valley database and the models rerun, mean
precipitation still was a significant explanatory variable and the
amount of overall variation explained went down. The intertwin-
ing of these natural and human gradients are often complex, yet
this type of covariance can affect comparison of results and appli-
cation of models to different regions affected by unique natural
factors.

In summary, we were able to use widely available digital cover-
ages of land-use and land-cover data summarized at the watershed
and riparian scale as explanatory variables to predict commonly
used macroinvertebrate metrics. MLR models with only two to
three explanatory variables were able to explain between 41 and
74% of the variation in macroinvertebrate metrics. In each region,
the best model contained some land-use measure of urban and/or
agriculture, yet often the model was improved by including a natu-
ral explanatory variable such as mean annual precipitation or mean
watershed slope. Two macroinvertebrate metrics were common
among all three regions: the metric that summarizes the richness of
tolerant macroinvertebrates (RICHTOL) and some form of EPT rich-
ness (the combination of the aquatic insect orders Ephemeroptera,
Plecoptera and Trichoptera). Best models were developed for the
same two invertebrate metrics even though the geographic regions
have distinct differences in precipitation, geology, elevation, slope,
population density, and land-use. With further development, mod-
els like these can be used to better understand causal linkages
between environmental drivers and stream biological attributes
or condition. Further, such models not only represent the founda-
tion of more complex mechanistic models but may also be highly
useful tools for researchers or managers for predicting biological
indicators of stream condition at unsampled sites.
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Appendix 1. Sources of geographical information system
(GIS) and digital data used in model development

ing Resolution/scale Reference

1:24,000 U.S. Geological Survey, National Hydrography
Dataset, Digital data, Accessed January 2007 at
http://nhd.usgs.gov/data.html

30 m U.S. Geological Survey, National Land-Cover
Dataset 1992, Digital data, Accessed March 2003
at http://landcover.usgs.gov/natllandcover.php

30 m U.S. Geological Survey, National Land-Cover
Dataset 2001, Digital data, Accessed January 2007

at http://www.mrlc.gov/

10 m U.S. Geological Survey, National Elevation
Dataset, Digital data, Accessed May 2007 at
http://seamless.usgs.gov/

http://nhd.usgs.gov/data.html
http://landcover.usgs.gov/natllandcover.php
http://www.mrlc.gov/
http://seamless.usgs.gov/
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A
Processing
format

Resolution/scale Reference

Raster 10 m U.S. Geological Survey, National Elevation
Dataset, Digital data, Accessed May 2007 at
http://seamless.usgs.gov/

Vector 1:100,000 U.S. Census Bureau, TIGER line data, Digital data,
Accessed May 2007 at
http://www.census.gov/geo/www/tiger/

Vector 1:24,000 Oregon BLM, Ground Transportation Roads
Publication Arc, Digital data, Accessed July 2007
at http://www.blm.gov/or/gis/

Vector 1:250,000 Natural Resource Conservation Service, STATSGO
soils data, Digital data, Accessed May 2007 at
http://datagateway.nrcs.usda.gov/

Raster 30 m U.S. Census Bureau, Census 2000, Digital data,
Accessed May 2007 at
http://www.census.gov/main/www/cen2000.html

Raster 30 arc-
second

PRISM Group, Oregon State University,
Precipitation data for the U.S., Digital data,
Accessed May 2007 at
http://www.prismclimate.org

Vect

R

A

A

B

B

B

B

C

C

C

C

C

C

C

C

D

I.R. Waite et al. / Ecological

ppendix 1 (Continued )
Spatial dataset Data source Source

data
format

Slope National Elevation Dataset (NED) Raster

Road Networks U.S. Census Bureau Tiger Vector

Ground Transportation Roads
Publications Arc

Vector

Soil Infiltration Capacity USDA NRCS STATSGO Vector

Population Density U.S. Census Bureau Census 2000 Vector

Precipitation Oregon State University PRISM Raster

Dams National Inventory of Dams Vector
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